
A crash course in unix
mimi, verica, brian, chris

Introduction

By the end of this tutorial you will know what unix is and how to:

‣ log in and out of your account

‣ move through unix’s directories

‣ manipulate files and directories

‣ use common programs to speed up your work

‣ print a file

‣ customize your environment

‣ log in to a remote computer

This is not a comprehensive course, but a
beginning, a glimpse into the world of unix.

Chris
Intro

Mimi
Directories & Files

Mimi
Applications & Shells

Chris
Remote Sessions

What is unix?

Unix is a circa 1970 operating system (OS)

‣ BUT, it has evolved to stay modern.

‣ Widely used by technical types (engineers, scientists)

‣ OS: the way computers know what to do AND how users
interact with the hardware

‣ unix is fun!

What unix is NOT

Unix is used instead
of MS Windows.

You don’t open
unix.

Linux and Mac OSX
are Unix-based

Unix is not a programing language.

Unix is not a program. (It is many programs.)

Unix is not hard to understand or use.

Logging in

“logging in” starts a session under your username.

‣ To log in to the system: enter your username

‣ enter your password

‣ WELCOME TO UNIX

open a terminal window

‣ where you’ll enter commands using a shell

‣ shell: translates commands for kernel

‣ kernel: core of the OS, where the instructions are translated
so the hardware can understand what to do.

When you log in and open a terminal, it looks for resource files,
more on this later.

Copy some stuff for later:
$ cp ../verica/dmy/usefulaliases .
$ cp ../verica/dmy/scriptingexample.csh .

Not impressed? Confused? Just wait!

courier font is
used when we type
unix commands.
You should be able
to type the same
thing at your
prompt.

The $ symbol is
used to represent
the unix prompt.

Try a command

Logging out

learn to leave:

‣ at the prompt, type exit

‣ That exits from the terminal...

‣ now either open a new terminal

‣ or log in again if you are completely out.

Always use exit
to quit a session.
Avoid closing an
active window.

Every new terminal
window you open
starts a new
“session.” You can
have many sessions
open at once.

Unix commands

commands tell the computer what to do
for example, cp copies a file
‣ most direct method:

$ commandname arguments

more generally, unix commands have the structure:
$ commandname -[options] {arguments}

commandname -- the command (cp, ls, etc)
-[options] -- options to change behavior, usually 1-2 characters
{arguments} -- the input/output/instructions the command needs
to run

‣ example 1:
$ cp -r ../verica/dmy/ .

-r option
argument 1: “target files,” ../verica/dmy/
argument 2: “destination” (dot means pwd)

‣ example 2:
$ cp dmy/test* .

Unix commands: getting help

man: One way to see the options of a command is to use the
manual, or “man page”
‣ $ man ls
‣ Now we can use a few options with ls:

$ ls
$ ls -a
$ ls -a test*
$ ls -ar
sometimes you can use multiple options

Web searches like
Google are great
resources for
getting help with
commands.

Unix commands: redirection

PIPELINES
“pipe” output from one command to another.
‣ example: send output of ncdump to a pagination program

(less)
‣ $ ncdump -c testfile.nc | less
‣ the “pipe” symbol redirects the output to less
‣ multiple pipes can be strung together (pipeline)

Other kinds of redirection
‣ put output of command into a file: command > filename
‣ append output to end of file: command >> filename
‣ give command input: command < filename
‣ examples will follow later!!

Don’t be
overwhelmed,
redirection is just
for convenience!

ADVANCED:
Try looking at the
tee command.

Directory Structure
Directory/File Manipulation

Directory tree

...

brian/

...

chris/

...

mimi/

... dmy/

verica/

home/

...

bin/

...

include/

...

lib/

usr/

...

mail/

...

msgs/

...

spool/

...

tmp/

var/

/

Translate to MS Windows:
directories = folders
cd/ls/grep = Windows Explorer

Commands
pwd path of working directory

ls list

cd change directory

cp copy

rm remove

mv move (rename)

mkdir make directory

rmdir remove directory

cat concatenate and print files

more / less pagination - display text to screen

head / tail display beginning / end of file

grep search for text

find search for path

chmod change mode of permissions

du disk usage

pwd: path of working directory
check where you are:
$ pwd

ls: list
see the contents of the current directory:
$ ls

cd: change directory
go to “parent directory:”
$ cd ..
check where you are now:
$ pwd
go back to your home directory:
$ cd your_user_name

Where? What? Move!

Create. Destroy.

mkdir - make directory
make directory named temp:

 $ mkdir temp
check what you have in the directory now:

 $ ls

rmdir - remove directory
remove directory temp:

 $ rmdir temp
check if temp is there:

 $ ls

Copy directory and move in

cp - copy
copy directory named homeworks from my dmy directory to a
directory called projects:

 $ cp -r /home/verica/dmy/homeworks dmy/projects

ls - list
list what is in the dmy without entering into it

 $ ls dmy

cd - change directory
move into tmp in dmy

 $ cd dmy/tmp

ls - list

‣ list what’s in the directory dmy/tmp
 $ ls

‣ list in a long format to get a bunch of information that you
might find useful at some point (file mode, number of links,
owner name, group name, number of bytes in the file, date
and time file was last modified, and the path name)

 $ ls -l

‣ list also files/directories with names that start with dot (.)
 $ ls -a

‣ list both in a long format and files with names starting with .
 $ ls -la

Copy, rename, remove files

‣ list the content of the directory
 $ ls

cp - copy
‣ copy file named dmyfile to file named newfile
 $ cp dmyfile newfile

‣ list again
 $ ls

mv - move/rename
‣ rename dmyfile into newerfile
 $ mv dmyfile newerfile

‣ list again
 $ ls

rm - remove (delete)
‣ delete newfile
 $ rm newfile

‣ list again
 $ ls

Wild cards

$ cd tmp
* - exchanges any series of letters or numbers, including nonexisting ones

‣ list all files/directories with names starting with file
 $ ls file*

? - exchange only one letter or number
‣ list all files/directories with names starting with file and having one

more character at the end:
 $ ls file?

[] - exchange given range of letters or numbers
‣ list files with names that start with file, finish with 0 and have 1, 2 or

3 in between
 $ ls file[1-3]0

WARNING: never type rm *

Text files

cat - concatenate files
$ less file1 (q to quit)
$ less file2 (q to quit)

‣ concatenate these files to file catfiles:
$ cat file[12] > catfiles

more and less - display file on the screen, but less is more powerful, as it
allows going back to the beginning of the file, searching through the file …
‣ see again what is in the file catfiles:
$ less catfiles

head - displays only the beginning of the file
tail - displays only the end of the file (-f is an useful option, as it keeps
displaying the end of the file even when the file is still changing)
To create and modify longer and more meaningful files you need to use text
editors, like emacs or vi or one of gazillion others

grep - searches for the text either in the files or in the output
of some command
‣ look for files that contain 3 in their text:
 $ grep 3 ./*
‣ look for files that contain 3 in their names:
 $ ls ./file* | grep 3

find - searches for the location of a file with prescribed
parameters
‣ look for a file in a dmy directory that contains e in its

name:
 $ find ~/dmy/ -name "*e*"

Search

Ownership, permissions and space

‣ list the files in current directory to see who is owner and
what are the permissions:
$ ls -l

chmod - change mode of permissions
‣ set the your rights as a user to be read, write and

execute, your group’s rights to be read and execute and
for others to only be able to read files named file?:
$ chmod u=rwx,g=rx,o=r file?

du - disk usage
‣ check how much space (in KB) is taken by your current

directory:
$ du -ks

Applications & Shells

Processes and Programs

$ ls
‣ what you see is files and directories

$ top
‣ you see the columns 'COMMAND', 'CPU', 'USER' plus a few

others. This command tells you what processes and programs are
running on the machine you're on (COMMAND), how much of the
CPU they're using, and who's running them (USER).

• For example, one of the processes running right now is 'top',
and you are the user running it

• To end 'top’:
‣ $[ctrl-c]
‣ This stops the process active in a terminal window.

ps is similar to top, except that it shows less information, it doesn't
remain active, and it only shows you what's running in one terminal.

So how do I start programs?

Forgot the name?
Try ctrl-d!
$ fir[ctrl-d]

Generally, the program name will be in your path or aliased to a
command that will open the program (more on paths and aliases later!)

 You can use Firefox to surf the Web. Let's try opening it now...
$ firefox &

• It should open in a window.
You can use kill to close a misbehaving program.

$ ps shows you the process id (PIDs) of programs
$ kill [-9] (PID) to close emacs (fill in PID from prev. step)

Forgot the “&”?
Try ctrl-z/bg/fg

SOME USEFUL PROGRAMS:
Data processing: Matlab, NCL, IDL
Word processing/presentation software/spreadsheets:
LaTeX, Bibtex
Text Editors: vi, emacs, nedit
Imaging: GIMP, ImageMagick
Misc: Acroread (pdfs), Gaim (IM), Firefox

Printing

You can print a text file or a PostScript file (“ps”) by sending it
directly to the printer with

$ lpr filename.ps
‣ Some useful flags with lpr:
-P printername sends to specified printer
-# NUM prints NUM copies of the file
-K2 prints two-sided, book format

You can also use convert to change an image file or pdf to a ps,
which you can print with lpr.

$ convert tempfile.pdf tempfile.ps

What does “print”
really mean?
It means writing
output... either to the
screen (standard
output) or to a
printer.

Don’t try:
lpr file.pdf it
will print
GIBBERISH!!!
Also, other file
exentions (gif, jpg)
will not print with
lpr.

Let’s talk about shells…

What is a shell?

‣ The shell is what you’ve been using to issue commands and
open programs. It’s the user interface of Unix.

‣ Comes in different varieties: right now you’re using TENEX C-
shell (tcsh). Other options include bash (Bourne again shell), sh
(original Bourne shell). You can switch between shells within a
session, or change your default. Syntax of the commands is the
primary difference between shells.

‣ $ echo $SHELL
 shows you which shell you’re using (will say /bin/tcsh)

Try using
autocomplete
(available on most
shells) by pressing
TAB after typing a
few letters.

Let’s talk about shells… part deux

You can use commands specific to your shell to set up your working
environment.

$ cd (go back to your home directory)
$ ls -a

The file ‘.cshrc’ is the configuration file for the tcsh. You can
modify this file to add things that you like!
Let’s take a look:
$ less .cshrc (q to quit less)
The file has commands separated into three categories:

– environmental settings set environmental variables and
libraries used by some programs

– command paths tell the shell where to look for executables
– aliases let you make short cuts for commands

Customizing your .cshrc

Let’s add a few useful aliases to your .cshrc file.
The file ‘usefulaliases’ has some useful aliases in it. Take a look:
$ less usefulaliases (q to quit less)
$ cp .cshrc cshrc.backup

(make a backup of your original .cshrc file, just in case)
$ cat usefulaliases >> .cshrc will append usefulaliases to
your .cshrc file.
$ source .cshrc updates the commands in your terminal. You only
need to do this if you add aliases/paths/etc after you open a shell.
$ ll (one of the aliases we just added: now is the same as “ls -l”: lists
the contents of the folder in long format.)

You can check to see if an alias exists and what it’s aliased to by
typing which CMD where CMD is the command you’re searching.
Example: $ which ll

One extremely powerful property of the unix
environment is the ability to put a list of commands into
a file, and run the list like a program.

$ less scriptingexample.csh (an example tcsh script)
‘scriptingexample.csh’ takes two arguments as input, and creates a
file called outputfile that includes those arguments in a sentence.

Before you can use this file like a program, you have to make it
executable:
$ chmod a+x scriptingexample.csh
$./scriptingexample.csh unix fantastic runs this
‘program’
$ less outputfile to look at the file it created.

Shell scripting

Shell scripts are especially useful for repetitive jobs. Examples include:
renaming files, repeatedly moving files from one directory to another,
simple data analysis jobs, automation of things like conversions (from ps
to jpg, e.g,), or for shortcuts for systematically editing files

Remote Sessions

Remote sessions

HOME NETWORK

REMOTE NETWORK

DAOS NETWORK

Your Your
WorkWork
ComputerComputer

Your
Home
Computer

Your
Laptop
Computer

Your
Advisor’s
Computer

Your
Group’s
Computer

DAOS
Data
Server

Remote
Super-
computer

Remote
Data
Storage

DAOS
GATEWAY

SSH Connections

SSH Connections

Remote sessions - why?

Resources (CPU, storage, data, collaboration, etc)

EXAMPLES: task (resource)

‣ access reanalysis data stored in Boulder, CO (storage/data)
‣ run a model and do analysis simultaneously (CPU)
‣ You are at a conference:

‣ check your email (convenience)
‣ give a file to a colleague (collaboration/storage)
‣ access data on your work computer (data)

‣ Industrial espionage. ($$$)

Always use secure methods!!
‣ OpenSSH, or as you will know it, ssh (“secure shell”)

connect to a computer called fifi:
$ ssh username@fifi.atmos.ucla.edu

‣ enter password to access fifi
‣ now you should be at a unix prompt on fifi, it will use the resource

file in your home directory on fifi. Try to look at that:
fifi$ less .bashrc

What if you want a graphical interface? Use the -X/-Y option:
$ ssh -Y username@fifi.atmos.ucla.edu
‣ open a new xterm: fifi$ xterm &

ssh is often used as
a verb: “just ssh to
bluesky to run the
job.”

Your computer
keeps a record of
all the hosts you
connect to with
ssh. Take a look at
~/.ssh/known_hosts

Remote sessions: ssh

mailto:username@fifi.atmos.ucla.edu
mailto:username@fifi.atmos.ucla.edu
mailto:username@fifi.atmos.ucla.edu
mailto:username@fifi.atmos.ucla.edu

Remote sessions: scp

Copy a file from one computer to another:
use “secure copy:”
$ scp username@fifi.atmos.ucla.edu:~/../
chollow/.bashrc ~/temporaryitems/chris_bashrc

Send a file to a different computer:
$ scp testfile.nc
username@fifi.atmos.ucla.edu:~/dmy/tmp/
test_send.nc

scp is just like cp, and will be your primary method, but
sometimes you need to send many files, or you have to do
more complicated sets of copies, for that use sftp...

scp can be used
recursively (“-r”) to
copy a directory
structure, or with
wildcards to copy
all files that match a
pattern.

when using
wildcards on the
remote computer,
you need to
enclose the
argument in quote
marks

sometimes you will
use “anonymous
ftp” sites. Then you
do not supply a
username. Some
sites will use
“sftp” (secure
version)

mailto:username@fifi.atmos.ucla.edu
mailto:username@fifi.atmos.ucla.edu
mailto:username@fifi.atmos.ucla.edu
mailto:username@fifi.atmos.ucla.edu

Remote sessions: sftp

Transfer files between the computers:
use “secure file transfer protocol”

First, log on to the remote machine:
$ sftp air.atmos.ucla.edu

‣ use ls and cd to navigate the remote directories, and
lls and lcd for the local ones.

‣ use get to copy files from the remote machine to the local
machine, and put to copy from the local machine to the
remote one:
sftp> get testdata/test_air.txt
sftp> put Pictures/pic_fifi.txt

When you are done, log out of the remote machine:
sftp> exit

you may often use sftp
to transfer data to and
from the machine
“sftp.atmos.ucla.edu”
(great name, huh). You
can log in to sftp from an
outside machine and
“put” files there
temporarily, and then log
in from a local machine
to “get” those files.

Wrap-up

We can help you, or Prashant Doma can help you, just ask.

This is available at http://www.atmos.ucla.edu/~xep

There is A LOT more to learn. Try looking at Harley Hahn’s
introductory book.

The internet has lots and lots and lots of unix resources.

GOOD LUCK!

http://www.atmos.ucla.edu/~xep
http://www.atmos.ucla.edu/~xep

